ngHelperUserVoice: AngularJS service for the UserVoice API

UserVoice is a Saas platform that offers different customer engagement tools i.e. feedback- and ticketing tools. A modern web application written in AngularJS, should always offer the user the possibility to open a ticket whenever it is needed. One solution to do so is to use the UserVoice Contact widget, but if you would prefer to use an API, for instance if your contact form has special styles that you don’t want to loose, here is the solution:

The new ngHelper component ngHelperUserVoice is a lightweight angular service for opening tickets in UserVoice. The component follows the angular way of building single page applications and allows the configuration of the module via provider and offers a standard service:

$uservoice.openTicket(“NAME”, “EMAIL”, “SUBJECT”, “MESSAGE”).then(function(ticketId) {
  alert(“Ticket with id: ” + ticketId + ” created”);
}).catch(function(error) {
  alert(“Error: ” + error);
});

This component makes it super simple to interact with the UserVoice API. If you like the component feel free to add other features, I will accept push requests as fast as possible.

Advertisements

Enable AngularJS HTML5 Mode in Azure Websites

A brand new web application written in Javascript, e.g. AngularJS is often using the hashbang to build URIs which can be processed from the SPA router. These URIs can not be indexed by the most search engine crawlers. Also visitors have problems remembering specific resources.

This problem is addressed by the HTML5Mode of AngularJS or to be more technical by the History-API of the browser. With the HTML5Mode the Angular-App is able to change the browsers URI without performing a full page reload. The following URI

https://example.com/#/contract

becomes

https://example.com/contract

This article describes how to enable the HTML5Mode in an Angular application, including the customization of a development server: http://ericduran.io/2013/05/31/angular-html5Mode-with-yeoman/

Great, but when someone visits the app directly with that URI, the server needs to redirect the request to the index.html page of the application. This fact requires help from the server side normally realized with URL rewriting modules. Microsoft has everything on board to define the needed rules in a web.config as described in this article: http://coderwall.com/p/mycbiq/deep-linking-angularjs-on-windows-azure-iis

Hint: The same method can be used to enforce https when someone is visiting via http, just follow this link: http://stackoverflow.com/questions/9823010/how-to-force-https-using-a-web-config-file

This little changes should help to give your AngualarJS App more visibility in the web.

Deploy AngularJS-Apps to Azure WebSites with Codeship

The Azure Cost Monitor is a SaaS application which is extended and improved frequently. Updates take place several times a week without interrupting end users. This agile approach of software development requires continuous integration and a structured deployment process to keep quality and development on a high level. Written in javascript – nodejs for the backend and angularjs for the frontend – the application is deployed to Azure WebSites, the fully managed web hosting solution of Microsoft.

Azure supports deployment from GitHub which works very well for nodejs applications, but angularjs applications need to be compiled to minify the code and rename the images, what prevents caching issues in the browser. The guys from Codeship are offering one of the best cloud platforms to enable continuous deployment for Azure WebSites and many other services.

This tutorial describes a continuous deployment process for an angularjs application to Azure WebSites, based on Codeship. The source code is hosted in a public GitHub repository and the angularjs app is scaffolded with yeoman.

Step 1: Create your AngularJS application

First of all a new Angular application needs to be created with the following yeoman command:

yo angular

This example uses Sass with Compass and Bootstrap, so this options need to be selected in the creation wizard of yeoman. After creating the application it could make sense to test if everything is generated correctly, by starting the development server with this command:

grunt serve

grunt-wiredep is a grunt task which is responsible for updating all the HTML files and minify the JS/CSS files. This task has an issue in version 1.7.0 so it needs to be updated to version 1.9.0 via package.json. The following line needs to be replaced in the package.json:

“grunt-wiredep”: “^1.7.0”,

to

“grunt-wiredep”: “^1.9.0”,

Last but not least the updated package needs to be installed with

npm install

Bower is the component which is used to install all needed web components. The Codeship sandbox has no bower installed out of the box, so the dependency needs to be added with the following command to the package.json as well:

npm install bower –save-dev

Besides that, the commandline interface for grunt needs to be part of the package.json, so that it becomes installed into the Codeship sandbox:

npm install grunt-cli –save-dev

Step 2: Beam Compass & Sass into the Codship sandbox

YeoMan is using Sass and Compass for modern CSS compilation, so it’s required in the Codeship sandbox as well. All used tools are ruby gems so a simple Gemfile with the following content defines the dependencies:

source “https://rubygems.org”

gem ‘sass’, “3.2.9”
gem ‘sass-globbing’, “>= 1.1.0”
gem ‘compass’, “0.12.2”
gem ‘breakpoint’, “2.0.5”
gem ‘singularitygs’, “< 2.0.0”
gem ‘chunky_png’, “1.3.3”

Alle components need to be installed with the command

bundle install

which generates the Gemfile.lock.

Step 3: Activate the CI build in Codeship

All changes described in the steps above should be commited in a GitHub repository. After that everything is prepared to create a new project in Codeship which is connected to the GitHub repository:

Screen Shot 2014-12-20 at 23.11.09

The following setup commands of the Codeship projects should be entered to install all dependencies and kick off the angular build:

rvm use 1.9.3
bundle install
npm install
bower install
grunt build

All the build output is stored in the dist directory. After all preparation, a simple push to the projects GitHub repository lets Codeship start building your application instantly. The first build takes a little bit longer because Codeship prepares the dependency caches. The second one should be done in about 1:30 minutes.

Step 4: Prepare your Azure WebSite

A new Azure Website needs to be created in the Azure Management Portal. Every Azure WebSite supports different ways to publish content, besides traditional FTP Azure WebSites supports deployment from source control. In the specific case of this tutorial the deployment from source control feature should be set to the option “Local Git Repository”:

Screen Shot 2014-12-20 at 23.13.10

Screen Shot 2014-12-20 at 23.14.12

This means Azure hosts a git repository and everything that is committed into this repository will become active in the Azure Website. After that, the next goal is to let Codeship commit all changes into this repository after every successful build.

Step 5: Bring deployment online

Codeship allows to add a deployment script under the project settings for specific branches. In this sample every committed change from the master branch is deployed. In a production environment the system should only be triggered from a specific deployment branch, e.g. deploy/azure.

The following script deploys the compiled angular app to the Azure Website:

# Config git
git config –global user.email “$GITMAIL”
git config –global user.name “$GITUSER”
# Clone the whole azure repository
cd
git clone $GITREPO azure
# Add the compiled app
cd azure
rm -R -f *
cp -R -f ~/clone/dist/* .
git add -A
git commit -m “Code shipped”
# push to azure
git push origin

Last but not least, all used variables need to be stored as environmental settings in Codeship. This prevents that Codeship prints out sensitive data to the logs and decouples configuration settings from deployment script:

Screen Shot 2014-12-20 at 23.15.09

The GITREPO variable contains the https based git URL from the local git repository of the Azure WebSite. It includes username and password in the URL, e.g.

https://{{user}}:{{password}}@{{website}}.scm.azurewebsites.net:443/{{website}}.git

The deployment credentials can be found in the Azure portal for the Azure website.

Finally a simple push into the Git repository of the project triggers a build via Codeship and a deployment into the right Azure WebSite. Users do not loose access to the SaaS application except for a couple seconds after redeploying when the IIS load the new application.

This fully automated process supports every agile software development process and helps you to focus on making features and not updating servers.

Happy Deploying 🙂

private bower components, a simple solution

Bower is an amazing solution to bring structure into javascript based projects. Without bower the reusing of components on git repositories would be a mess. During my current project I searched for a solution to integrate private bower based components into my closed source project. All I had was a private git server with the option to create infinite repositories.

 

 

When you google you find many options to setup a separate bower registry which means the backend behind bower. This is very useful if you want to search in a database for a component. This approach also helps bigger organisations to allow everybody to publish a component and the rest of the research and development department should be able to find it.

In our case the situation was more simple. We are a very small team and everybody is able to see our official git repositories on our centralized git server. Only repositories on this server are allowed to be used in customer facing projects. There are many private git repositories but these do not contain public code. Coming from this situation we wanted a solution which comes without an extra server component.

Searching again made me sure that it should be possible to add a git url into the bower.json file. Our git server is configured for the https protocol only and for this just copying the repository url did not work. After checking out the bower code base a solution was on the horizon:

git+https://YOURGITREPO

The important thing here, git+https. This gives the bower code the hint to use the git protocol over http. Just using https:// would not work because bower thinks it’s a http based directory download.

Small teams should be able to work well with this solution, especially when the git server is part of a team management system which contains wiki and document components as well.